University of Cambridge > Talks.cam > Cambridge Analysts' Knowledge Exchange > Hunter, Cauchy Rabbit, and Optimal Kakeya Sets

Hunter, Cauchy Rabbit, and Optimal Kakeya Sets

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dominic Dold.

Note unusual time and room change.

A planar set that contains a unit segment in every direction is called a Kakeya set. These sets have been studied intensively in geometric measure theory and harmonic analysis since the work of Besicovich (1928); we find a new connection to game theory and probability. A hunter and a rabbit move on the integer points in [0,n) without seeing each other. At each step, the hunter moves to a neighboring vertex or stays in place, while the rabbit is free to jump to any node. Thus they are engaged in a zero sum game, where the payoff is the capture time. The known optimal randomized strategies for hunter and rabbit achieve expected capture time of order n log n. We show that every rabbit strategy yields a Kakeya set; the optimal rabbit strategy is based on a discretized Cauchy random walk, and it yields a Kakeya set K consisting of 4n triangles, that has minimal area among such sets (the area of K is of order 1/log(n)). Passing to the scaling limit yields a simple construction of a random Kakeya set with zero area from two Brownian motions. (Joint work with Y. Babichenko, Y. Peres, R. Peretz and P. Winkler).

This talk is part of the Cambridge Analysts' Knowledge Exchange series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity