University of Cambridge > Talks.cam > Cambridge Analysts' Knowledge Exchange > Matrix Suprema & Compressive Sensing

Matrix Suprema & Compressive Sensing

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Vittoria Silvestri.

The problem that is the subject of this talk is simple to describe; take a change of basis matrix, remove the first N rows, find the size of the largest entry left & determine how this value decays with N. In certain compressed sensing problems the faster this decay is the more we are allowed to compress the problem by subsampling. Now suppose we have the freedom to permute the rows & are looking for the fastest decay possible. If the basis corresponding to the rows has some intrinsic structure, what does an optimal permutation look like within this structure and how does this impact on how we can subsample?

The talk will discuss some of the theoretical limits of this problem before moving onto various specific cases such as changing basis from complex exponentials to wavelets in one and many dimensions. No previous knowledge of compressed sensing or wavelets is required as I shall be introducing things from the ground up.

This talk is part of the Cambridge Analysts' Knowledge Exchange series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity