University of Cambridge > Talks.cam > Computer Laboratory Security Seminar > SCION: Scalability, Control, and Isolation On Next-Generation Networks

SCION: Scalability, Control, and Isolation On Next-Generation Networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Laurent Simon.

Abstract: We present the first Internet architecture designed to provide route control, failure isolation, and explicit trust information for end-to-end communications. SCION separates ASes into groups of independent routing sub-planes, called trust domains, which then interconnect to form complete routes. Trust domains provide natural isolation of routing failures and human misconfiguration, give endpoints strong control for both inbound and outbound traffic, provide meaningful and enforceable trust, and enable scalable routing updates with high path freshness. As a result, our architecture provides strong resilience and security properties as an intrinsic consequence of good design principles, avoiding piecemeal add-on protocols as security patches. Meanwhile, SCION only assumes that a few top-tier ISPs in the trust domain are trusted for providing reliable end-to-end communications, thus achieving a small Trusted Computing Base. Both our security analysis and evaluation results show that SCION naturally prevents numerous attacks and provides a high level of resilience, scalability, control, and isolation.

Bio: Adrian Perrig is a Professor of Computer Science at the Department of Computer Science at the Swiss Federal Institute of Technology (ETH) in Zürich, where he leads the network security group. From 2002 to 2012, he was a Professor of Electrical and Computer Engineering, Engineering and Public Policy, and Computer Science (courtesy) at Carnegie Mellon University. He served as the technical director for Carnegie Mellon’s Cybersecurity Laboratory (CyLab). He earned his Ph.D. degree in Computer Science from Carnegie Mellon University under the guidance of J. D. Tygar, and spent three years during his Ph.D. degree at the University of California at Berkeley. He received his B.Sc. degree in Computer Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL). Adrian’s research revolves around building secure systems—in particular security of future Internet architectures.

This talk is part of the Computer Laboratory Security Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity