University of Cambridge > > Isaac Newton Institute Seminar Series > Cytoskeletal pattern formation: Self organization of driven filaments

Cytoskeletal pattern formation: Self organization of driven filaments

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains

Living cells rely on the self organization mechanisms of cytoskeleton to adapt to their requirements. Especially in processes such as cell division, intracellular transport or cellular motility the controlled self assembly to well defined structures, which still allow a dynamic reorganization on different time scales are of outstanding importance. Thereby, the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors a central role. One important and promising strategy to identify the underlying governing principles is to quantify the physical process in model systems mimicking the functional units of living cells. Here I will present in vitro minimal model systems consisting of actin filaments, crosslinking molecules and myosin II exhibiting collective long range order and dynamics. I will discuss how a balance of local force exertion, alignment interactions, crosslinking and hydrodynamics affect the evolving dynamic structures.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity