University of Cambridge > > Isaac Newton Institute Seminar Series > Optimisation of chiral structures for micro-scale propulsion

Optimisation of chiral structures for micro-scale propulsion

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains

In micron-scale hydrodynamics, shape and geometry play a strong role in determining the speed at which a body can move through fluid. This shape dependence is particularly important to the design of many microfluidic devices, including magnetically actuated micro-structures fabricated and studied for biomedical applications. In this talk, I will discuss several important experimentally-realisable micro-structures whose shapes couple their rotations and translations. I will address the optimal design of these devices through an infinite-dimensional optimisation problem, obtaining geometries that maximise speed for a given applied torque. Our optimisations show that attached payloads have a significant effect on optimal micro-structure shapes and current designs can be improved by upwards of 450%.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity