COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > DAMTP Astrophysics Seminars > Formation of structures around HII regions: Ionization feedback from massive stars
Formation of structures around HII regions: Ionization feedback from massive starsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Jérôme Guilet. We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur. The inclusion of turbulence in the model shows its importance in the formation of cometary globules. Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical “collect and collapse” scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel and SOFIA and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Horsehead Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions based on the line-of-sight velocity profiles and probability density functions. This talk is part of the DAMTP Astrophysics Seminars series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsQueens' Arts Seminar Pembroke College Corporate Partnership TalksOther talksCrowding and the disruptive effect of clutter throughout the visual system Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments On the elastic-brittle versus ductile fracture of lattice materials The Partition of India and Migration Investigation into appropriate statistical models for the analysis and visualisation of data captured in clinical trials using wearable sensors International Women's Day Lecture 2018: Press for Progress by Being an Active Bystander Structural basis for human mitochondrial DNA replication, repair and antiviral drug toxicity Art and Migration A polyfold lab report An approach to the four colour theorem via Donaldson- Floer theory The Rise of Augmented Intelligence in Edge Networks Zone 6 Convention |