University of Cambridge > Talks.cam > CQIF Seminar > NP-hardness of decoding quantum error correction codes

NP-hardness of decoding quantum error correction codes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Ashley Montanaro.

Though the theory of quantum error correction is intimately related to the classical coding theory, in particular, one can construct quantum error correction codes (QECCs) from classical codes with the dual containing property, this does not necessarily imply that the computational complexity of decoding QEC Cs is the same as their classical counterparts. Instead, decoding QEC Cs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expect degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or non-degenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems, and suggests the existence of a quantum cryptosystem based on the hardness of decoding QEC Cs.

This talk is part of the CQIF Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity