University of Cambridge > Talks.cam > DAMTP Astrophysics Seminars > Rapid accretion and state changes in strongly magnetised disks

Rapid accretion and state changes in strongly magnetised disks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Loren E. Held.

Accretion disks power many of the universe’s most luminous phenomena, acting as intermediaries that enable matter to shed angular momentum and accrete onto stars or compact objects. While angular momentum transport in disks has been extensively studied, especially in the context of magneto-rotational turbulence, significant challenges remain. These include reconciling simulation results with observed accretion rates and understanding state transitions in cataclysmic variables, x-ray binaries, and quasars.

In this talk, I explore how strongly magnetised disks — where azimuthal magnetic fields dominate, with energies exceeding the plasma’s thermal energy — may help resolve these issues. Interest in this regime is motivated by recent “hyper-refined” cosmological simulations, in which such a disk forms self-consistently around a black hole and supports super-Eddington accretion rates. Using local shearing-box simulations, we identify two distinct turbulent states: the previously known “high-β” state with modest accretion stresses (α << 1) and weak magnetic fields, and a new “low-β” state with strong, self-sustaining azimuthal magnetic fields, supersonic turbulence, and rapid accretion (α ≈ 1). The transition between these states is abrupt and occurs when sufficiently strong azimuthal fields are present, allowing the system to sustain a Parker-instability-driven dynamo. While many aspects of this behaviour remain uncertain, it offers a promising pathway to reconcile simulations and observations, with interesting implications for quasars and other rapidly accreting systems.

This talk is part of the DAMTP Astrophysics Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity