Diffusion Models Beyond Mean Prediction
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact .
Teams link available upon request (it is sent out on our mailing list, eng-mlg-rcc [at] lists.cam.ac.uk). Sign up to our mailing list for easier reminders via lists.cam.ac.uk.
Traditional diffusion models are typically trained to predict only the mean of the denoised distribution given a noisy sample. But what if we go beyond the mean? This talk explores how incorporating additional information—such as predicting the covariance of the denoised distribution—can significantly accelerate sampling and improve density estimation. We’ll dive into different techniques for covariance prediction, their theoretical connection, and practical benefits for more efficient and expressive generative modeling.
This talk is part of the Machine Learning Reading Group @ CUED series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|