University of Cambridge > > Isaac Newton Institute Seminar Series > Numerical Methods for CT Reconstruction with Unknown Geometry Parameters

Numerical Methods for CT Reconstruction with Unknown Geometry Parameters

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact nobody.

RNTW02 - Rich and non-linear tomography in medical imaging, materials and non destructive testing

Computed tomography (CT) techniques are well known for their ability to produce high quality images needed for medical diagnostic purposes. Unfortunately standard CT machines are extremely large, heavy, require careful and regular calibration, and are expensive, which can limit their availability in point-of-care situations. An alternative approach is to use portable machines, but parameters related to the geometry of these devices (e.g., distance between source and detector, orientation of source to detector) cannot always be precisely calibrated, and these parameters may change slightly when the machine is adjusted during the image acquisition process. In this work, we describe the nonlinear inverse problem that models this situation, and discuss algorithms that can jointly estimate the geometry parameters and compute a reconstructed image. In particular, we propose a hybrid machine learning and block coordinate descent (ML-BCD) approach that uses an ML model to calibrate geometry parameters, and uses BCD to refine the predicted parameters and reconstruct the imaged object simultaneously. Numerical experiments illustrate that our new method can efficiently improve the accuracy of both the image and geometry parameters. This is joint work with Chang Meng.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity