University of Cambridge > Talks.cam > Machine Learning Reading Group @ CUED > CBL Alumni Talk: Latent Stochastic Differential Equations: An Unexplored Model Class.

CBL Alumni Talk: Latent Stochastic Differential Equations: An Unexplored Model Class.

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Elre Oldewage.

We show how to do gradient-based stochastic variational inference in stochastic differential equations (SDEs), in a way that allows the use of adaptive SDE solvers. This allows us to scalably fit a new family of richly-parameterized distributions over irregularly-sampled time series. We apply latent SDEs to motion capture data, and to demonstrate infinitely-deep Bayesian neural networks. We also discuss the pros and cons of this barely-explored model class, comparing it to Gaussian processes and neural processes.

Some technical details are in this paper: https://arxiv.org/abs/2001.01328 And code is available at: https://github.com/google-research/torchsde

Bio: David Duvenaud is an assistant professor in computer science at the University of Toronto. His research focuses on continuous-time models, latent-variable models, and deep learning. His postdoc was done at Harvard University, and his Ph.D. at the University of Cambridge. David also co-founded Invenia, an energy forecasting company.

This talk is part of the Machine Learning Reading Group @ CUED series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2021 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity