University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Turbulent fluid dynamics at the margins of rotational and stratified control

Turbulent fluid dynamics at the margins of rotational and stratified control

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

Geophysical fluid dynamicists have developed a mature perspective on the dynamical influence of Earth’s rotation, while most other areas of fluid dynamics can safely disregard rotation. Similarly, geophysical problems usually arise under the influence of stable density stratification at least as importantly as velocity shear. In this talk the dominant turbulence and wave behaviors in the rotating and non-rotating, stratified and non-stratified fluid-dynamical realms are described, and particular attention is given to their borderlands, where rotational and stratified influences are significant but not dominant. Contrary to the inverse energy cascade of geostrophic turbulence toward larger scales, a forward energy cascade develops within the borderlands from the breakdown of diagnostic force balances, frontogenesis, and frontal instabilities, and then it continues further through the small-scale, non-rotating, unstratified (a.k.a. universal) realm until it dissipates at the microscale. In particular, this submesoscale cascade behavior is of interest as a global route to kinetic and available-potential energy dissipations in the oceanic general circulation, as well as an energy source for microscale material mixing across stably-stratified density surfaces.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2021 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity