COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > DAMTP Astrophysics Seminars > Tides in the high-eccentricity migration of hot Jupiters: Triggering diffusive growth by nonlinear mode interactions
Tides in the high-eccentricity migration of hot Jupiters: Triggering diffusive growth by nonlinear mode interactionsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Cleo Loi. PLEASE NOTE THE DIFFERENT START TIME OF **4 PM**! High eccentricity migration is a possible formation channel for hot Jupiters. However, in order for it to be consistent with the observed population of planets, tides must circularize the orbits in an efficient way. A potential mechanism for such rapid circularization is the diffusive growth of the tidally driven planetary f-mode. Such growth occurs if the f-mode’s phase at pericenter varies chaotically from one pericenter passage to the next. Previous studies focused on the variation of the orbital period due to tidal back-reaction on the orbit as the source of chaos. Here we show that nonlinear mode interactions can also be an important source. Specifically, we show that nonlinear interactions between a parent f-mode and daughter f-/p-modes induce an energy-dependent shift in the oscillation frequency of the parent. This frequency shift varies randomly from orbit to orbit because the parent’s energy varies. As a result, the parent’s phase at pericenter varies randomly, which we find can trigger it to grow diffusively. We show that the phase shift induced by nonlinear mode interactions in fact dominates the shift induced by tidal back-reaction and significantly lowers the one-kick energy threshold for diffusive growth by about a factor of 5 compared to the linear theory’s prediction. Nonlinear interactions could thus enhance the formation rate of hot Jupiters through the high-eccentricity migration channel and potentially mitigate the discrepancy between the observed and predicted occurrence rates for close-in gas giants as compared to those further from the star. This talk is part of the DAMTP Astrophysics Seminars series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsType the title of a new list here Dealing with the extreme pain of loss Clare Hall Lecture: The evolution of Abcam plc - 30 April 2013Other talksTALK POSTPONED - Ineffective Responses to Unlikely Outbreaks: Hypothesis Building in Newly-Emerging Infectious Disease Outbreaks Prof Gabriel Waksman - Structural and molecular biology of bacterial Type IV Secretion Systems Neural Processes Wasserstein Natural Gradients for Reinforcement Learning Generation Covid-19: Should the fetus be worried? |