University of Cambridge > Talks.cam > DAMTP Astrophysics Seminars > Particle acceleration in relativistic magnetospheres

Particle acceleration in relativistic magnetospheres

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Chris Hamilton.

Rapidly rotating neutrons stars and black holes are the central engines of some of the most extreme astrophysical phenomena such as gamma-ray bursts, pulsars, X-ray binaries, binary mergers or active galactic nuclei. The activity of these compact objects is often associated with the creation and the launching of a relativistic magnetized plasmas accompanied by efficient particle acceleration and non-thermal radiation, but the underlying physical mechanisms are still poorly understood. The particle-in-cell method is well-suited to model these processes from first principles. Recent numerical simulations have clearly established that relativistic magnetic reconnection within the magnetosphere of pulsars and black holes plays a crucial role in dissipating magnetic energy which is then efficiently channeled into energetic particles and high-energy radiation. Results will be discussed in the context of gamma-ray pulsars, merging binary neutron stars and weakly accreting Kerr black holes.

This talk is part of the DAMTP Astrophysics Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity