University of Cambridge > > Isaac Newton Institute Seminar Series > A Hybrid Block Bootstrap For Sample Quantiles Under Weak Dependence

A Hybrid Block Bootstrap For Sample Quantiles Under Weak Dependence

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

STS - Statistical scalability

The subsampling bootstrap and the moving blocks bootstrap provide effective methods for nonparametric inference with weakly dependent data. Both are based on the notion of resampling (overlapping) blocks of successive observations from a data sample: in the former single blocks are sampled, while the latter splices together random blocks to yield bootstrap series of the same length as the original data sample. Here we discuss a general theory for block bootstrap distribution estimation for sample quantiles, under mild strong mixing assumptions. A hybrid between subsampling and the moving blocks bootstrap is shown to give theoretical benefits, and startling improvements in accuracy in distribution estimation in important practical settings. An intuitive procedure for empirical selection of the optimal number of blocks and their length is proposed. The conclusion that bootstrap samples should be of smaller size than the original data sample has significant implications for computational efficiency and scalability of bootstrap methodologies in dependent data settings. This is joint work with Todd Kuffner and Stephen Lee and is described at

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity