University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Convex cocompactness in real projective geometry

Convex cocompactness in real projective geometry

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

NPCW04 - Approximation, deformation, quasification

We will discuss a notion of convex cocompactness for discrete groups preserving a properly convex open domain in real projective space. For hyperbolic groups, this notion is equivalent to being the image of a projective Anosov representation. For nonhyperbolic groups, the notion covers Benoist's examples of divisible convex sets which are not strictly convex, as well as their deformations inside larger projective spaces. Even when these groups are nonhyperbolic, they still share some of the good properties of classical convex cocompact subgroups of rank-one Lie groups; in particular, they are quasi-isometrically embedded and structurally stable. This is joint work with J. Danciger and F. Guéritaud.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity