University of Cambridge > Talks.cam > Computational Neuroscience > Computational Neuroscience Journal Club

Computational Neuroscience Journal Club

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Daniel McNamee.

Alberto Bernacchia will cover:

Abstract: We studied how the posterior parietal cortex combines new information with ongoing activity dynamics as mice accumulate evidence during a virtual navigation task. Using new methods to analyze population activity on single trials, we found that activity transitioned rapidly between different sets of active neurons. Each event in a trial, whether an evidence cue or a behavioral choice, caused seconds-long modifications to the probabilities that govern how one activity pattern transitions to the next, forming a short-term memory. A sequence of evidence cues triggered a chain of these modifications resulting in a signal for accumulated evidence. Multiple distinguishable activity patterns were possible for the same accumulated evidence because representations of ongoing events were influenced by previous within- and across-trial events. Therefore, evidence accumulation need not require the explicit competition between groups of neurons, as in winner-take-all models, but could instead emerge implicitly from general dynamical properties that instantiate short-term memory.

This talk is part of the Computational Neuroscience series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity