University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Direct Statistical Simulation of Jet Formation in Local and Global Geometries

Direct Statistical Simulation of Jet Formation in Local and Global Geometries

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematics for the Fluid Earth

Co-author: Brad Marston (Brown University)

We present Direct Statistical Simulation (DSS) of jet formation. We consider the simplest barotropic model both on a spherical surface and a local beta-plane. DSS involves the direct solution of the low-order statistics via an expansion in cumulants. In both cases we compare the results of our DSS with statistics obtained from long DNS simulations. We discuss in what circumstances truncating the cumulant expansion at second order (thereby including eddy mean-flow interaction but neglecting eddy-eddy interactions for the fluctuating fields) gives a good description of the dynamics of the flow. We demonstrate that this depends on the degree of lack of statistical equilibrium in the flow (as measured by the Zonostrophy parameter). We discuss briefly how to proceed to higher order to include eddy-eddy interactions and the possibility of forward and inverse cascades.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity