University of Cambridge > Talks.cam > Machine Learning @ CUED > Probabilistic Dimensional Reduction with the Gaussian Process Latent Variable Model

Probabilistic Dimensional Reduction with the Gaussian Process Latent Variable Model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Zoubin Ghahramani.

Density modelling in high dimensions is a very difficult problem. Traditional approaches, such as mixtures of Gaussians, typically fail to capture the structure of data sets in high dimensional spaces. In this talk we will argue that for many data sets of interest, the data can be represented as a lower dimensional manifold immersed in the higher dimensional space. We will then present the Gaussian Process Latent Variable Model (GP-LVM), a non-linear probabilistic variant of principal component analysis (PCA) which implicitly assumes that the data lies on a lower dimensional space.

Having introduced the GP-LVM we will review extensions to the algorithm, including dynamics, learning of large data sets and back constraints. We will demonstrate the application of the model and its extensions to a range of data sets, including human motion data, a vowel data set and a robot mapping problem.

This talk is part of the Machine Learning @ CUED series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity