University of Cambridge > > Cosmology Lunch > Is Our Universe the Remnant of Chiral Anomaly in Inflation?

Is Our Universe the Remnant of Chiral Anomaly in Inflation?

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact James Bonifacio.

Modern cosmology has been remarkably successful in describing the universe from a second after the Big Bang until today. However, its physics before that time is still much less certain. It profoundly involves particle theory beyond the Standard Model to explain long-standing puzzles: the origin of the observed matter asymmetry, and massive neutrinos, as well as the particle physics of dark matter and cosmic inflation. In this talk, I will explain that a new framework based on embedding axion-inflation in left-right symmetric gauge extensions of the SM can possibly solve and relate these seemingly unrelated mysteries of modern cosmology. The baryon asymmetry and dark matter today may be remnants of a pure quantum effect (chiral anomaly) in inflation which is the source of CP violation in inflation. As a smoking gun, this setup has robust observable signatures for the GW background to be probed by future CMB missions and laser interferometer detectors.

This talk is part of the Cosmology Lunch series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity