University of Cambridge > Talks.cam > Machine Learning @ CUED > NeVAE: A Deep Generative Model for Molecular Graphs

NeVAE: A Deep Generative Model for Molecular Graphs

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Robert Peharz.

Deep generative models have been praised for their ability to learn smooth latent representation of images, text, and audio, which can then be used to generate new, plausible data. However, current generative models are unable to work with molecular graphs due to their unique characteristics—their underlying structure is not Euclidean or grid-like, they remain isomorphic under permutation of the node labels, and they come with a different number of nodes and edges. In this work, we propose NeVAE, a novel variational autoencoder for molecular graphs, whose encoder and decoder are specially designed to account for the above properties by means of several technical innovations. In addition, by using masking, the decoder is able to guarantee a set of valid properties in the generated molecules. Experiments reveal that our model can discover plausible, diverse and novel molecules more effectively than several state of the art methods. Moreover, by utilizing Bayesian optimization over the continuous latent representation of molecules our model finds, we can also find molecules that maximize certain desirable properties more effectively than alternatives.

This talk is part of the Machine Learning @ CUED series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity