University of Cambridge > Talks.cam > Computational Neuroscience > Computational Neuroscience Journal Club

Computational Neuroscience Journal Club

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Rodrigo Echeveste.

Laurence Aitchison will be presenting:

• Task representations in neural networks trained to perform many cognitive tasks

• Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome & Xiao-Jing Wang

• Nature Neuroscience 2019

https://www.nature.com/articles/s41593-018-0310-2

Abstract: The brain has the ability to flexibly perform many tasks, but the underlying mechanism cannot be elucidated in traditional experimental and modeling studies designed for one task at a time. Here, we trained single network models to perform 20 cognitive tasks that depend on working memory, decision making, categorization, and inhibitory control. We found that after training, recurrent units can develop into clusters that are functionally specialized for different cognitive processes, and we introduce a simple yet effective measure to quantify relationships between single-unit neural representations of tasks. Learning often gives rise to compositionality of task representations, a critical feature for cognitive flexibility, whereby one task can be performed by recombining instructions for other tasks. Finally, networks developed mixed task selectivity similar to recorded prefrontal neurons after learning multiple tasks sequentially with a continual-learning technique. This work provides a computational platform to investigate neural representations of many cognitive tasks.

This talk is part of the Computational Neuroscience series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity