University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Statistical guarantees for Bayesian uncertainty quantification in inverse problems

Statistical guarantees for Bayesian uncertainty quantification in inverse problems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

UNQW04 - UQ for inverse problems in complex systems

We discuss recent results in mathematical statistics that provide objective statistical guarantees for Bayesian algorithms in (possibly non-linear) noisy inverse problems. We focus in particular on the justification of Bayesian credible sets as proper frequentist confidence sets in the small noise limit via so-called `Bernstein – von Mises theorems', which provide Gaussian approximations to the posterior distribution, and introduce notions of such theorems in the infinite-dimensional settings relevant for inverse problems. We discuss in detail such a Bernstein-von Mises result for Bayesian inference on the unknown potential in the Schroedinger equation from an observation of the solution of that PDE corrupted by additive Gaussian white noise. See https://arxiv.org/abs/1707.01764 and also https://arxiv.org/abs/1708.06332

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity