COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > CMIH Hub seminar series > Optimisation methods for Bayesian inference: Application to high dimensional inverse problems
Optimisation methods for Bayesian inference: Application to high dimensional inverse problemsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Rachel Furner. An important number of scientific and technological applications (ranging from healthcare to astronomy) consist in solving high dimensional inverse problems, where an unknown object is estimated from the provided measurements. A common method to solve these problems is to rely on a Bayesian maximum a posteriori (MAP) approach. A main limitation of this approach is that it does not provide any information regarding the uncertainty in the solution delivered. This analysis is particularly important in imaging problems that are ill-posed or ill-conditioned, for subsequent decision making processes (e.g. decision concerning a tumor appearing on a brain image from MRI ). In this presentation I will present a methodology to probe the data and perform uncertainty quantification. In the proposed method, we quantify the uncertainty associated with particular structures appearing in the MAP estimate, obtained from a log-concave Bayesian model. A hypothesis test is defined, where the null hypothesis represents the non-existence of the structure of interest in the true image. To determine if this null hypothesis is rejected, we use the data and prior knowledge. Computing such test in the context of imaging problem is often intractable for state-of-the-art Markov chain Monte Carlo algorithms, due to the high dimensionality involved. In this work, we formulate the Bayesian hypothesis test as a convex minimization problem, which is subsequently solved using a proximal primal-dual algorithm. The proposed method is applied to astronomical and medical imaging. Joint work with Marcelo Pereyra and Yves Wiaux This talk is part of the CMIH Hub seminar series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsPMP Presentation Day PEDAL - Research Centre for Play in Education, Development & Learning Friends of Clare Hall Art SocietyOther talksUncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins “Structural Biology and Chemistry of Histone Deacetylases in Human Disease and Drug Discover Sir Richard Stone Annual Lecture: The Emergence of Weak, Despotic and Inclusive States Multilingual Identities and Heterogeneous Language Ideologies in the New Latino Diaspora Positive definite kernels for deterministic and stochastic approximations of (invariant) functions |