University of Cambridge > > Isaac Newton Institute Seminar Series > Fluid Mechanics of Soft Robots and Actuators

Fluid Mechanics of Soft Robots and Actuators

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

GFSW01 - Form and deformation in solid and fluid mechanics

Soft robotics is an emerging field of research and development. Its goal is to design robots with flexible structure that can deform and change their shape and dimensions continuously. The structure and actuation of soft robotics is greatly inspired by biology, where living creatures across a wide span of scales use soft appendages or a flexible body for manipulation or locomotion – from elephant's trunk and octopus' arm to jellyfish and caterpillar. While the mechanism of biological motion is based on muscle actuation, artificial soft robots require some sort of flexible actuation. A promising approach of soft robotics is actuation by pressurization of embedded fluidic networks. While common, currently, the effects of viscosity are not examined in such configurations, thus limiting the available deformation patterns possible by such actuation.

The aim of the presented work is to analytically and experimentally examine steady and transient deformation of soft actuators by internal viscous flow. We specifically focus on interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel, embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane, and thus pressure within the channel creates a local moment deforming the beam. We show that by setting appropriate time-varying inlet pressure signal, viscosity enables to increase the possible deformation patterns available to a given actuator geometry and limit the deformation to a section of the actuator. This work connects fluid dynamics to soft robotics research.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity