University of Cambridge > > Isaac Newton Institute Seminar Series > Parametric Groebner basis computations and elimination

Parametric Groebner basis computations and elimination

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

BPR - Big proof

Parametric Groebner basis and systems were proposed in 1990's independently by Weispfenning and Kapur to study solutions of parametric polynomials for various specializations of parameters. Kapur's motivation for studying them arose from the application of geometry theorem proving and model based image analysis.  Recently there is interest in using these structures for developing heuristics that first consider equalities over the complex field in a formula expressed using ordering relation with an objective of developing an incomplete method for solving problems formulated in the theory of real closed field. It is hoped this incomplete approach can handle a larger class of problems in practice than the cylinderical algebraic decomposition method by Collins and his collaborators.  We will give an overview of algorithms for computing parametric Groebner basis and system developed in collaboration with Profs. Sun and Wang of the Academy of Mathematics and System Science of the Chinese Academy of Sciences. An existence proof of a canonical comprehensive Groebner basis associated a parametric ideal will be presented. However, an algorithm to compute this object is still elusive.  Some open problems in this topic will be discussed.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity