University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Community recovery in weighted stochastic block models

Community recovery in weighted stochastic block models

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

SINW01 - Scalable statistical inference

Co-authors: Min Xu (University of Pennsylvania), Varun Jog (University of Wisconsin – Madison)

Identifying communities in a network is an important problem in many fields, including social science, neuroscience, military intelligence, and genetic analysis. In the past decade, the Stochastic Block Model (SBM) has emerged as one of the most well-studied and well-understood statistical models for this problem. Yet, the SBM has an important limitation: it assumes that each network edge is drawn from a Bernoulli distribution. This is rather restrictive, since weighted edges are fairly ubiquitous in scientific applications, and disregarding edge weights naturally results in a loss of valuable information. In this paper, we study a weighted generalization of the SBM , where observations are collected in the form of a weighted adjacency matrix, and the weight of each edge is generated independently from a distribution determined by the community membership of its endpoints. We propose and analyze a novel algorithm for community estimation in the weighted SBM based on various su broutines involving transformation, discretization, spectral clustering, and appropriate refinements. We prove that our procedure is optimal in terms of its rate of convergence, and that the misclassification rate is characterized by the Renyi divergence between the distributions of within-community edges and between-community edges. In the regime where the edges are sparse, we also establish sharp thresholds for exact recovery of the communities. Our theoretical results substantially generalize previously established thresholds derived specifically for unweighted block models. Furthermore, our algorithm introduces a principled and computationally tractable method of incorporating edge weights to the analysis of network data.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity