University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > On the set of L-space surgeries for links

On the set of L-space surgeries for links

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

HTL - Homology theories in low dimensional topology

A 3 -manifold is called an L-space if its Heegaard Floer homology has minimal possible rank. A link (or knot) is called an L-space link if all sufficiently large surgeries of the three-sphere along its components are L-spaces. It is well known that the set of L-space surgeries for a nontrivial L-space knot is a half-line. Quite surprisingly, even for links with 2 components this set could have a complicated structure. I will prove that for “most” L-space links (in particular, for most algebraic links) this set is bounded from below, and show some nontrivial examples where it is unbounded. This is a joint work with Andras Nemethi.



This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity