University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Polynomial functors and algebraic K-theory

Polynomial functors and algebraic K-theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

OASW02 - Subfactors, higher geometry, higher twists and almost Calabi-Yau algebras

The Grothendieck group K_0 of a commutative ring is well-known to be a λ-ring: although the exterior powers are non-additive, they induce maps on K_0 satisfying various universal identities. The λ-operations yield homomorphisms on higher K-groups. In joint work in progress with Glasman and Nikolaus, we give a general framework for such operations. Namely, we show that the K-theory space is naturally functorial for polynomial functors, and describe a universal property of the extended K-theory functor. This extends an earlier algebraic result of Dold for K_0. In this picture, the λ-operations come from the strict polynomial functors of Friedlander-Suslin.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity