University of Cambridge > > Isaac Newton Institute Seminar Series > Estimating trace-suspect match probabilities in forensics for singleton Y-STR haplotypes using coalescent theory

Estimating trace-suspect match probabilities in forensics for singleton Y-STR haplotypes using coalescent theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

FOSW03 - Statistical modelling of scientific evidence

Estimation of match probabilities for singleton haplotypes of lineage markers, i.e. for haplotypes observed only once in a reference database augmented by a suspect profile, is an important problem in forensic genetics. We compared the performance of four estimators of singleton match probabilities for Y-STRs, namely the count estimator, both with and without Brenner’s so-called kappa correction, the surveying estimator, and a previously proposed, but rarely used, coalescent-based approach implemented in the BATWING software. Extensive simulation with BATWING of the underlying population history, haplotype evolution and subsequent database sampling revealed that the coalescent-based approach and Brenner’s estimator are characterized by lower bias and lower mean squared error than the other two estimators. Moreover, in contrast to the two count estimators, both the surveying and the coalescent-based approach exhibited a good correlation between the estimated and true match probabilities. However, although its overall performance is thus better than that of any other recognized method, the coalescent-based estimator is still very computation-intense. Its application in forensic practice therefore will have to be limited to small reference databases, or to isolated cases of particular interest, until more powerful algorithms for coalescent simulation have become available.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity