University of Cambridge > > Isaac Newton Institute Seminar Series > Set theory and algebraic topology

Set theory and algebraic topology

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact webseminars.

Mathematical, Foundational and Computational Aspects of the Higher Infinite

In this talk I plan to discuss some joint work with Sheila Miller related to knots. Quandles are algebraic structures that can be associated to (tame) knots, and they in fact constitute one of the few complete invariants we have for knots. However, there is some dissatisfaction with quandles as invariants, as it heuristically seems difficult to determine whether two quandles are isomorphic. Our result supports this impression: we show that the isomorphism relation of quandles is as complex as it possibly could be in Borel reducibility terms, being Borel complete. On the other hand, equivalence of tame knots is trivial from a Borel reducibility perspective, raising the prospect that more manageable complete invariants might exist.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity