University of Cambridge > > Isaac Newton Institute Seminar Series > A random walk proof of Kirchhoff's matrix tree theorem

A random walk proof of Kirchhoff's matrix tree theorem

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact webseminars.

Random Geometry

Kirchhoff’s matrix tree theorem relates the number of spanning trees in a graph to the determinant of a matrix derived from the graph. There are a number of proofs of Kirchhoff’s theorem known, most of which are combinatorial in nature. In this talk we will present a relatively elementary random walk-based proof of Kirchhoff’s theorem due to Greg Lawler which follows from his proof of Wilson’s algorithm. Moreover, these same ideas can be applied to other computations related to general Markov chains and processes on a finite state space. Based in part on joint work with Larissa Richards (Toronto) and Dan Stroock (MIT).

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity