COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > On the geometry of discrete and continuous random planar maps
On the geometry of discrete and continuous random planar mapsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact webseminars. Random Geometry Co-author: Curien, Nicolas (Universit Paris-Sud) We discuss some recent results concerning the geometry of discrete and continuous random planar maps. In the continuous setting, we consider the so-called Brownian plane, which is an infinite-volume version of the Brownian map and is conjectured to be the universal scaling limit of many discrete random lattices such as the UIPT (uniform infinite planar triangulation) or the UIPQ (uniform infinite planar quadrangulation). The hull of radius r in the Brownian plane is obtained by filling in the holes in the ball of radius r centered at the distinguished point. We obtain a complete description of the process of hull volumes, as well as several explicit formulas for related distributions. In the discrete setting of the UIPT or the UIPQ , we derive similar results via a detailed study of the peeling process already inverstigated by Angel. We also apply our results to first-passage percolation on these infinite random lattices. This is a joint work with Nicolas Curien. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCUCS Birkbeck Lectures Islamic Society Chemical Engineering and Biotechnology Departmental Seminars Computer Laboratory Computer Architecture Group Meeting Life SciencesOther talksModular Algorithm Analysis Systems for Big Data Applications: Revolutionising personal computing An exploration of grain growth & deformation in zirconium Making Refuge: Cambridge & the Refugee Crisis Nonstationary Gaussian process emulators with covariance mixtures Climate Change: Engaging Youth |