University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Geodesics in Brownian surfaces

Geodesics in Brownian surfaces

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Random Geometry

In this talk, we introduce a class of random metric spaces called Brownian surfaces, which generalize the famous Brownian map to the case of topologies more complicated than that of the sphere. More precisely, these random surfaces arise as the scaling limit of random maps on a given surface with a boundary. We will review the known results about these rather wild random metric spaces and we will particularly focus on the geodesics starting from a uniformly chosen random point. This allow to characterize some subsets of interest in terms of geodesics and, in particular, in terms of pairs of geodesics aiming at the same point and whose concatenation forms a loop not homotopic to 0.

Our results generalize in particular the properties shown by Le Gall on geodesics in the Brownian map, although our approach is completely different.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity