University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Reflection methods for user-friendly submodular optimization

Reflection methods for user-friendly submodular optimization

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. In consequence, there is need for efficient optimization procedures for submodular functions, in particular for minimization problems. While general submodular minimization is challenging, we propose a new approach that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our approach is a formulation of the discrete submodular minimization problem as a continuous best approximation problem. It is solved through a sequence of reflections and its solution can be automatically thresholded to obtain an optimal discrete solution. Our method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we show the benefits of our new algorithms for two image segmentation tasks (joint work with Stefanie Jegelka and Suvrit Sra).

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity