University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > A thermal quench induces spatial inhomogeneities in a holographic superconductor

A thermal quench induces spatial inhomogeneities in a holographic superconductor

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematics and Physics of the Holographic Principle

Co-authors: Antonio M. Garcia-Garcia (Cambridge), Hua Bi Zeng.

Holographic duality is a powerful tool to investigate the far-from equilibrium dynamics of superfluids and other phases of quantum matter. For technical reasons it is usually assumed that, after a quench, the far-from equilibrium fields are still spatially uniform. Here we relax this assumption and study the time evolution of a holographic superconductor after a temperature quench but allowing spatial variations of the order parameter amplitude. Even though the initial state and the quench are spatially uniform we show the order parameter develops spatial oscillations with an amplitude that increases with time until it reaches a stationary value for long times. The free energy of these inhomogeneous solutions is lower than that of the homogeneous ones. Therefore the former corresponds to the physical configuration that could be observed experimentally.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity