COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Lecture 1: One-shot Quantum Information Theory I: Entropic Quantities
Lecture 1: One-shot Quantum Information Theory I: Entropic QuantitiesAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani. Mathematical Challenges in Quantum Information Optimal rates of quantum information-processing tasks, such as compression and transmission of information, and manipulation of entanglement, were initially obtained in the so-called “asymptotic, memoryless setting”. In this setting, the underlying resources (e.g. information sources, channels and entanglement resources) are assumed to be memoryless, and to be available for asymptotically many uses. The optimal rates were shown to be given in terms of entropic quantities expressible in terms of the quantum relative entropy. In real-world communications and cryptographic systems, this setting is not generally valid: resources are used a finite number of times, and there may be correlations between their successive uses. Hence, it is important to evaluate the fundamental limits on information-processing tasks in the “one-shot setting”, in which one considers a finite number of uses of arbitrary resources. In the first lecture, I will discuss entropic quantities which play an important role in the one-shot setting, highlighting their salient mathematical properties and operational significances. In the second lecture, I will focus on the problem of transmission of information through quantum channels, to illustrate how some of the entropic quantities (introduced in the first lecture) arise naturally in the one-shot setting. This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsAnglia Ruskin University - Community Engagement Photonics Research Group - Department of Electrical Engineering Society of Spanish Researchers in the UK Land Economy Departmental Seminar Series Cambridge Rare Earths Society SCAMPS 09 - One day SymposiumOther talksTowards a whole brain model of perceptual learning The Ambonese Rumphius and his inter-island information networks Joinings of higher rank diagonalizable actions Childhood adversity and chronic disease: risks, mechanisms and resilience Replication or exploration? Sequential design for stochastic simulation experiments THE MATHEMATICAL MAGIC OF MIXED REALITY Mathematical applications of little string theory Single Cell Seminars (September) Coin Betting for Backprop without Learning Rates and More National crises, viewed in the light of personal crises |