University of Cambridge > > Isaac Newton Institute Seminar Series > Reconfigurable assemblies of active, auto-chemotactic gels

Reconfigurable assemblies of active, auto-chemotactic gels

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains

Using computational modeling, we show that self-oscillating Belousov-Zhabotinsky (BZ) gels can both emit and sense a chemical signal and thus, drive neighboring gel pieces to spontaneously self-aggregate, so that the system exhibits auto-chemotaxis. To date, this is the closest system to the ultimate self-recombining material, which can be divided into separated parts and the parts move autonomously to assemble into a structure resembling the original, uncut sample. We also show that the gels coordinated motion can be controlled by light, allowing us to achieve selective self-aggregation and control over the shape of the gel aggregates. By exposing the BZ gels to specific patterns of light and dark, we design a BZ gel train that leads the movement of its cargo. Our findings pave the way for creating reconfigurable materials from self-propelled elements, which autonomously communicate with neighboring units and thereby actively participate in cons tructing the final structure. In essence, the BZ gels resemble pieces of a construction toy that can be reused to build multiple structures and thus, provide a new route for creating dynamically reconfigurable materials.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity