University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Grothendieck-Teichmuller Groups in the Combinatorial Anabelian Geometry

Grothendieck-Teichmuller Groups in the Combinatorial Anabelian Geometry

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Grothendieck-Teichmller Groups, Deformation and Operads

By a result of Harbater and Schneps, the Grothendieck-Teichmuller groups may be regarded as natural objects in the study of the combinatorial anabelian geometry. In this talk, we discuss some results on the Grothendieck-Teichmuller groups that relate to the phenomenon of the tripod synchronization. In particular, I explain the surjectivity of the tripod homomorphism and a non-surjectivity result on the combinatorial cuspidalization.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2021 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity