Proof of the zig-zag conjecture
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani.
Grothendieck-Teichmller Groups, Deformation and Operads
In quantum field theory primitive Feynman graphs give—via the period map—rise to renormalization scheme independent contribution to the beta function. While the periods of many Feynman graphs are multiple zeta values there exists the distinguished family of zig-zag graphs whose periods were conjectured in 1995 by Broadhurst and Kreimer to be certain rational multiples of odd single zetas.
In joint work with F. Brown it was possible in 2012 to prove the zig-zag conjecture using the theory of graphical functions, single valued multiple polylogarithms and a theorem by D. Zagier on multiple zeta values of the form zeta(2,...,2,3,2,...,2).
This talk is part of the Isaac Newton Institute Seminar Series series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|