University of Cambridge > > Microsoft Research Cambridge, public talks > From Bounded to Unbounded Proofs of Correctness

From Bounded to Unbounded Proofs of Correctness

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

We describe automated techniques for proving program safety, that is, proving that every execution of a program does not cause a crash (e.g., via division by zero) and satisfies intended functionality (e.g., a programmer-supplied assertion). The core idea underlying our approach is that by examining a bounded version of the program, with a finite number of execution paths, we can generalize the proof of correctness to the whole program. Our generalization capitalizes on advances in SMT solving for path enumeration, novel interpolant generation techniques for DAGs of formulas, and a tight integration with abstract domains in order to improve interpolant “quality”. Our approach forms the basis of UFO , a C verifier we built in LLVM , that has recently won numerous categories in the 2013 Competition on Software Verification (SV-COMP).

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity