University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > The Expected Total Curvature of Random Polygons

The Expected Total Curvature of Random Polygons

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Topological Dynamics in the Physical and Biological Sciences

We consider the expected value for the total curvature of a random closed polygon. Numerical experiments have suggested that as the number of edges becomes large, the difference between the expected total curvature of a random closed polygon and a random open polygon with the same number of turning angles approaches a positive constant. We show that this is true for a natural class of probability measures on polygons, and give a formula for the constant in terms of the moments of the edgelength distribution.

We then consider the symmetric measure on closed polygons of fixed total length constructed by Cantarella, Deguchi, and Shonkwiler. For this measure, the expected total curvature of a closed n-gon is asymptotic to n pi/2 pi/4 by our first result. With a more careful analysis, we are able to prove that the exact expected value of total curvature is n pi/2 (2n/2n-3) pi/4. As a consequence, we show that at least 1/3 of fixed-length hexagons and 1/11 of fixed-length heptagons in 3-space are unknotted.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity