Vortex knots in a Bose-Einstein condensate
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani.
Topological Dynamics in the Physical and Biological Sciences
I will present a method for numerically building a quantum vortex knot state in the single scalar field wave function of a Bose-Einstein condensate. I will show how the two topologically simplest vortex knots wrapped over a torus evolve and may preserve their shapes by reporting results of the integration in time of the governing Gross-Pitaevskii equation.
In particular, I will focus on how the velocity of a vortex knot depends on the ratio of poloidal and toroidal radius: in a first approximation it is linear and, for smaller ratio, the knot travels faster. Finally, I will display mechanisms of vortex breaking by reconnections which produce simpler vortex rings whose number depends on initial knot topology.
This talk is part of the Isaac Newton Institute Seminar Series series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|