COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Optimal kernel choice for kernel hypothesis testing
Optimal kernel choice for kernel hypothesis testingAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins. This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending We consider two nonparametric hypothesis testing problems: (1) Given samples from distributions p and q, a two-sample test determines whether to reject the null hypothesis p=q; and (2) Given a joint distribution p_xy over random variables x and y, an independence test determines whether to reject the null hypothesis of independence, p_xy = p_x p_y. In testing whether two distributions are identical, or whether two random variables are independent, we require a test statistic which is a measure of distance between probability distributions. One choice of test statistic is the maximum mean discrepancy (MMD), a distance between embeddings of the probability distributions in a reproducing kernel Hilbert space. The kernel used in obtaining these embeddings is critical in ensuring the test has high power, and correctly distinguishes unlike distributions with high probability. In this talk, I will provide a tutorial overview of kernel distances on probabilities, and show how these may be used in two-sample and independence testing. I will then describe a strategy for optimal kernel choice, and compare it with earlier heuristics (including other multiple kernel learning approaches). Joint work with: Bharath Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu This talk is part of the Microsoft Research Cambridge, public talks series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsMEMS seminar Biophysical Techniques Lecture Series 2017 Inference Group Summary Health Industrial Sustainability MedSocOther talksRetinal mechanisms of non-image-forming vision The quasi-stationary nature of ‘steady-state’ cyclic deformation Current-Induced Stresses in Ceramic Lithium-Ion Conductors Satellite Observations for Climate Resilience and Sustainability Transport and Settling of Sediments in River Plumes Organic Bio-Electronic systems: from tissue engineering to drug discovery A polyfold lab report Throwing light on organocatalysis: new opportunities in enantioselective synthesis 'Cambridge University, Past and Present' “Modulating Tregs in Cancer and Autoimmunity” Microtubule Modulation of Myocyte Mechanics Self-Assembled Nanomaterials for 3D Bioprinting and Drug Delivery Applications |