University of Cambridge > Talks.cam > Microsoft Research Cambridge, public talks > Distributed Opportunistic Scheduling: A Control Theoretic Approach

Distributed Opportunistic Scheduling: A Control Theoretic Approach

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Microsoft Research Cambridge Talks Admins.

This event may be recorded and made available internally or externally via http://research.microsoft.com. Microsoft will own the copyright of any recordings made. If you do not wish to have your image/voice recorded please consider this before attending

Distributed Opportunistic Scheduling (DOS) techniques have been recently proposed to improve the throughput performance of wireless networks. With DOS , each station contends for the channel with a certain access probability. If a contention is successful, the station measures the channel conditions and transmits in case the channel quality is above a certain threshold. Otherwise, the station does not use the transmission opportunity, allowing all stations to recontend. A key challenge with DOS is to design a distributed algorithm that optimally adjusts the access probability and the threshold of each station. To address this challenge, in this paper we first compute the configuration of these two parameters that jointly optimizes throughput performance in terms of proportional fairness. Then, we propose an adaptive algorithm based on control theory that converges to the desired point of operation. Finally, we conduct a control theoretic analysis of the algorithm to find a setting for its parameters that provides a good tradeoff between stability and speed of convergence. Simulation results validate the design of the proposed algorithm and confirm its advantages over previous proposals.

This talk is part of the Microsoft Research Cambridge, public talks series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity