University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > A standard test case suite for two-dimensional linear transport on the sphere

A standard test case suite for two-dimensional linear transport on the sphere

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Multiscale Numerics for the Atmosphere and Ocean

It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, minimal resolution, the ability of the transport scheme to preserve filaments, transport rough distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions.

The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent) and four analytical initial con- ditions (varying from smooth to discontinuous). Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a true solution is needed. Results using a dozen state-of-the-art transport schemes that participated in the 2011 NCAR workshop on transport are presented.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity