University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Linear advection characteristics of a variable resolution global spectral method on the sphere

Linear advection characteristics of a variable resolution global spectral method on the sphere

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Multiscale Numerics for the Atmosphere and Ocean

Advection experiments are conducted with a variable resolution global spectral method on the sphere. The variable resolution grid has finer resolution over the tropics and the resolution decreases smoothly as we move towards the poles [Janakiraman et al (2012) ]. An Eulerian formulation of the linear advection is used to for the spectral discretization. Near dispersion-free advection is achieved on the high resolution tropical belt. The transport across homogeneous resolution regions produce very less dispersion errors. Transport over the poles result in severe grid representation errors. It is shown that increasing the resolution over the reatly reduces this error. Transport of a feature from apoint close to poles but not over it does not produce such representation errors. A comparison of time-schemes such as 4-th order Runge-Kutta method, Magazenkov scheme and Leap-frog scheme for the advection experiment is also presented.

Reference(s) : S. Janakiraman, Ravi S Nanjundiah and A.S. Vasudeva Murthy, A novel variable resolution global spectral method on the sphere, Vol. 231, No. 7, pp 2794—2810, 2012.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity