University of Cambridge > > Isaac Newton Institute Seminar Series > Parameterizing interaction of disparate scales: selective decay by Casimir dissipation in fluids

Parameterizing interaction of disparate scales: selective decay by Casimir dissipation in fluids

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Multiscale Numerics for the Atmosphere and Ocean

The problem of parameterizing the interactions of disparate scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in te{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity