Topological arguments in Kolmogorov complexity
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact Mustapha Amrani.
Semantics and Syntax: A Legacy of Alan Turing
We show how topological arguments (simple facts about non-homotopic mappings) can be used to prove result about Kolmogorov complexity. In particular, we show that for every string x of complexity at least n +c log n one can find a string y such that both conditional complexities C(x|y) and C(y|x) are equal to n+O(1).
This talk is part of the Isaac Newton Institute Seminar Series series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|