University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Momentum space entanglement and renormalization in quantum field theory

Momentum space entanglement and renormalization in quantum field theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Mathematics and Applications of Branes in String and M-theory

The degrees of freedom of any interacting quantum field theory are entangled in momentum space. Thus, in the vacuum state, the infrared degrees of freedom are described by a density matrix with an entanglement entropy. We derive a relation between this density matrix and a Wilsonian effective action. We argue that the entanglement entropy of and mutual information between subsets of field theoretic degrees of freedom at different momentum scales are natural observables in quantum field theory and demonstrate how to compute these in perturbation theory. The results may be understood heuristically based on the scale-dependence of the coupling strength and number of degrees of freedom. We measure the rate at which entanglement between degrees of freedom declines as their scales separate and suggest that this decay is related to the property of decoupling in quantum field theory.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity